Non-rigid Registration for 3D Active Shape Liver Modeling
نویسندگان
چکیده
منابع مشابه
Non-rigid 3D Shape Registration using an Adaptive Template
We present a new fully-automatic non-rigid 3D shape registration (morphing) framework comprising (1) a new 3D landmarking and pose normalisation method; (2) an adaptive shape template method to accelerate the convergence of registration algorithms and achieve a better final shape correspondence and (3) a new iterative registration method that combines Iterative Closest Points with Coherent Poin...
متن کاملDeformable Density Matching for 3D Non-rigid Registration of Shapes
There exists a large body of literature on shape matching and registration in medical image analysis. However, most of the previous work is focused on matching particular sets of features--point-sets, lines, curves and surfaces. In this work, we forsake specific geometric shape representations and instead seek probabilistic representations--specifically Gaussian mixture models--of shapes. We ev...
متن کاملCanonical Forms for Non-Rigid 3D Shape Retrieval
We present a new benchmark for testing algorithms that create canonical forms for use in non-rigid 3D shape retrieval. We have combined two existing datasets to create a varied collection of models for testing. Canonical forms attempt to factor out a shape’s pose, giving a pose-neutral shape. This opens up the possibility of using methods originally designed for rigid retrieval for the task of ...
متن کاملA comparison of methods for non-rigid 3D shape retrieval
Non-rigid 3D shape retrieval has become an active and important research topic in contentbased 3D object retrieval. The aim of this paper is to measure and compare the performance of state-of-the-art methods for non-rigid 3D shape retrieval. The paper develops a new benchmark consisting of 600 non-rigid 3D watertight meshes, which are equally classified into 30 categories, to carry out experime...
متن کاملElastic Model Based Non-rigid Registration Incorporation Statistical Shape Information
This paper describes a new method of non-rigid registration using the combined power of elastic and statistical shape models. The transformations are constrained to be consistent with a physical model of elasticity to maintain smoothness and continuity. A Bayesian formulation, based on this model, on an intensity similarity measure, and on statistical shape information embedded in corresponding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Science, Technology and Engineering Systems Journal
سال: 2018
ISSN: 2415-6698
DOI: 10.25046/aj030145